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Abstract. We show that the Hidden Local Symmetry Model, supplemented with well-known procedures
for breaking flavor SU(3) and nonet symmetry, provides all the information contained in the standard
Chiral Perturbation Theory (ChPT) Lagrangian L(0) + L(1). This allows to rely on radiative decays of
light mesons (V Pγ and Pγγ) in order to extract some numerical information of relevance to ChPT: a
value for Λ1 = 0.20 ± 0.04, a quark mass ratio of � 21.2 ± 2.4, and a negligible departure from the Gell-
Mann–Okubo mass formula. The mixing angles are θ8 = −20.40◦ ±0.96◦ and θ0 = −0.05◦ ±0.99◦. We also
give the values of all decay constants. It is shown that the common mixing pattern with one mixing angle
θP is actually quite appropriate and algebraically related to the η/η′ mixing pattern presently preferred
by the ChPT community. For instance the traditional θP is functionally related to the ChPT θ8 and fulfills
θP � θ8/2. The vanishing of θ0, supported by all data on radiative decays, gives a novel relation between
mixing angles and the violation of nonet symmetry in the pseudoscalar sector. Finally, it is shown that
the interplay of nonet symmetry breaking through U(3) → SU(3)× U(1) satisfies all requirements of the
physics of radiative decays without any need for additional glueballs.

1 Introduction

We have recently proposed a model for radiative decays of
all light mesons [1] which gives a consistent and successful
description of all reported experimental information. This
covers the 14 decay modes of the kind1 V → Pγ and P →
γγ. This vector meson dominance (VMD) based model re-
lies on the hidden local symmetry (HLS) approach devel-
oped in [2] which introduces the vector mesons as gauge
bosons of a spontaneously broken hidden local symme-
try and closely resembles Seiberg’s EM duality in super-
symmetric QCD [3], as noted in [4] and again in [5]. Its
anomalous sector [2,6] (referred to hereafter as FKTUY),
describes the radiative decays of light flavor mesons. In
its original form this Lagrangian is U(3) symmetric, as it
possesses both nonet symmetry and SU(3) flavor symme-
try.

In order to describe the full pattern of light mesons
radiative decays, these unbroken schemes need to be sup-
plemented with symmetry breaking mechanisms. Breaking
the SU(3) flavor symmetry is an essential step [1]. This is
performed following the mechanism proposed by Bando,
Kugo and Yamawaki (BKY) [7,4] and does not depend

� A preliminary version of this paper has been published on
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1 This counting does not include π0 → γγ, which would serve
to fix fπ. We prefered using directly the PDG recommended
value [10] as for fK

on any additional free parameter. An additional breaking
procedure [1,8,9] is needed in order to describe the ob-
served [10] features of K∗ radiative decays; it allows us to
recover for this sector a structure derived by G. Morpurgo
in his approach to low energy QCD [11].

An explicit form [12] of nonet symmetry breaking
(NSB) for vector (V) mesons seems to play a negligible
role [9] when focusing on radiative decays. Angular depar-
tures from ideal mixing are instead highly significant; they
can be essentially explained by the ωI/φI transitions2 in-
herent to SU(3) VMD models like HLS. One cannot, how-
ever, completely exclude that some kind of vector NSB is
hidden inside these angular effects [9].

Instead, NSB for pseudoscalar mesons (PS) is an es-
sential ingredient [1]. It has been performed in the manner
of [12], which turns out to allow couplings to singlet and
octet PS components to be different. It is a purpose of
the present paper to revisit the issue of how NSB can be
consistently implemented within the HLS Lagrangian.

The problem of η/η′ mixing [13,14] is tightly connected
with the breaking of nonet symmetry. This can be per-
formed at the level of the coupling constants [12], but this
breaking can also be connected with a possible glue com-
ponent inside light mesons [15–18]. Indeed, the full set
of radiative decays [1] examplify the large importance of
this effect. Within this context, this reference also showed
that effects of such a glue component can only affect the
η′ meson, but cannot be disentangled from genuine nonet

2 The subscript I indicates the ideal combinations



594 M. Benayoun et al.: VMD, the WZW Lagrangian and ChPT: The third mixing angle

symmetry breaking effects without some a priori knowl-
edge of one of these twin phenomena.

In connection with this particular problem, but even
more closely related with the effects of symmetry break-
down in Chiral Perturbation Theory (ChPT), Kaiser and
Leutwyler [19,20] advocate an η/η′ mixing scheme (see
[21] for a comprehensive review), more complicated than
the usual one, depending on two decay constants and two
mixing angles. Some phenomenological analyses [22,23]
have investigated this new scheme. In a more axiomatic
approach to QCD, Shore [24] also finds appropriate a four
parameter parametrization of the η/η′ mixing.

Nevertheless, the analysis of radiative decays (however,
14 independent decay modes) of [1] does not find any need
for a four–parameter structure of the η/η′ mixing, as if
phenomenology were exhibiting several relations among
the 4 decay constants [19,20,24], which might be fulfilled
at the (already) high level of accuracy permitted by the
data. To be more precise, [1] yields a quite satisfactory
description of the data by introducing one PS mixing angle
and one NSB parameter affecting the PS sector; additional
departures from SU(3) flavor symmetry as per BKY [7,
4] arise only through a dependence in fK/fπ, which can
hardly be considered as a (free) parameter.

More appealing, the anomalous Lagrangian of Wess,
Zumino and Witten (WZW) [25,26], with SU(3) symme-
try broken as explained in [1], leads to definitions of the
mixing angle and decay constants as per Current Alge-
bra and as following from the HLS–FKTUY framework.
The (single) mixing angle was found in [1] to be � −10◦,
and, moreover, the value for the octet decay constant is
f8 = 0.82fπ. The relevance of these parameter values is
strongly supported by an impressive agreement with ex-
perimental data within a highly constrained model (5 pa-
rameters for 14 decay modes). Interestingly, [27], relying
on lattice QCD calculations reaches also a mixing angle a
value � −10◦ ± 2◦, with a preference for −10.2◦.

On the other hand, there are repeated claims [28–30]
that a (single) mixing angle, as coming from standard Cur-
rent Algebra expressions, is quite appropriate and is found
to be much less negative (� −13◦ to � −15◦) than ex-
pected from ChPT (� −20◦). A quite detailed discussion
of this can be found in [31] (see also [32]) where such an
angle value is derived from a bound state approach. An-
other Lagrangian approach [33], parent to HLS using a
specific breaking scheme, recently claimed an angle value
close to the previously mentioned ones (� −15.4◦ ± 1.8◦).

All this seems in glaring disagreement with the expec-
tations of ChPT [13,14,19,20,34,35]. Taking into account
the special role of ChPT in low energy phenomenology, a
possible contradiction between ChPT, lattice QCD calcu-
lations or the VMD conceptual framework3 is a worrying
question which must be addressed and understood. This
is the purpose of the present paper, which will show that
the contradiction is illusory and only due to different def-
initions of the same parameters in a naive understanding
of the WZW approach (with encompasses the Current Al-

3 Or other approaches as listed in the throughout discussion
in [31]

gebra definitions) and in ChPT. We shall explicitly state
the relationships between them.

It will be shown that the VMD approach, relying on
the HLS model broken as in [1], is actually in accord
with all ChPT expectations associated with the ChPT
Lagrangian [19–21] L(0) +L(1). This will be illustrated by
deriving from a broken VMD Lagrangian model, all known
leading order expressions for ChPT mixing angles and de-
cay constants, and by deriving their expected numerical
values. For the sake of conciseness, we shall frequently use
NSB to refer to nonet symmetry breaking and to FSB for
SU(3) flavor symmetry breaking.

The outline of the paper is as follows. In Sect. 2 we
present a Lagrangian VMD model, based on the HLS ap-
proach, which includes both NSB and FSB. We show that
there is a close connection between them. In Sect. 3, we
study the field transformation which permits us to write
the kinetic energy of this broken VMD model in canon-
ical form, in terms of renormalized fields. We show here
that the field transformation of [1,9] corresponds to a first
order truncation in both NSB and FSB.

Section 4 gives the VMD description of the η/η′ → γγ
decay which depends on one mixing angle and nonet sym-
metry breaking (as parametrized by x). In Sect. 5 the cor-
responding description is derived, starting from the BKY
broken WZW Lagrangian, and it is shown that WZW and
VMD coincide.

In Sect. 6, we derive the set of relations which allows
one to define mixing angles and decay constants in accord
with the standard (or extended) ChPT approach. Here we
show, first that the definitions of mixing angles and decay
constants from VMD/WZW and ChPT do not coincide
once symmetry is broken and, second, that VMD provides
expressions and values for all accessible ChPT parameters
in accord with expectations. This is illustrated by several
examples, including the functional relation between the
VMD mixing angle θP and the ChPT angle θ8.

In Sect. 7, we show that starting from the axial
anomaly, it is possible to reconstruct the one angle mix-
ing scheme as it arises in our broken VMD model and
from the WZW Lagrangian; we comment on the previous
use of ChPT predictions in phenomenological analyses of
radiative decays data.

In Sect. 8, we show that nonet symmetry breaking and
pseudoscalar mixing angle(s) are functionally related,
which is a completely new result. This allows us to per-
form a fit of radiative decays with only 4 free parameters.
The level of nonet symmetry breaking correlated with the
fit value of the pseudoscalar mixing angle is shown to re-
move any need for glue in the η′ meson. A few other points
of interest are also examined (quark mass ratio, isoscalar
mass matrix, effects of NSB on PS mixing angle values).
Finally, Sect. 9 is devoted to conclusions.

2 A broken HLS model for radiative decays

The model developed in [1] in order to describe all light
meson radiative decays relies on breaking nonet symmetry
and flavor SU(3) in the HLS Lagrangian [2], and especially
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P ≡ P a′
T a′

=
1√
2
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2
π0 + 1√

6
π8 + 1√

3
η0 π+ K+

π− − 1√
2
π0 + 1√

6
π8 + 1√

3
η0 K0

K− K
0 −

√
2
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3
η0


 , a′ = 0, ..., 8 (2)

in its anomalous (FKTUY) sector [6]. The breaking pro-
cedure of SU(3) flavor symmetry (referred to hereafter as
FSB) in the non–anomalous HLS Lagrangian is the so–
called new scheme, a variant the original BKY breaking
mechanism [7] discussed in [4].

For the purpose of only studying light meson radia-
tive decays [1], a detailed knowledge of the nonet symme-
try breaking (NSB) mechanism is not needed; one only
needs to know the field renormalization it would imply.
The choice made in [1] was to postulate a likely form;
this was determined by the O’Donnell derivation of the
SU(3) – not U(3) – V Pγ couplings, which assumes only
the SU(3) flavor group structure, gauge invariance and
Lorentz invariance [12].

However, the way FSB and NSB in the PS sector merge
together is a much stronger assumption which only relies
on its impressive phenomenological success [1] when de-
scribing the full set of radiative decays of light mesons.
In this section, we aim at proposing a Lagrangian model
which provides the appropriate PS field renormalization;
it allows to strongly motivate this assumption, by relating
this Lagrangian to the ChPT framework.

2.1 Basic ingredients

The basic ingredients of the effective Lagrangian approach
to the interaction of vector and pseudoscalar mesons are
the matrices V and P of the vector and pseudoscalar fields
expressed in the flavor (u, d, s) basis. The vector meson
field matrix V is usually written4 in terms of ideally mixed
states (ωI , φI)

V ≡ V aT a

=
1√
2


 (ρ0 + ωI)/

√
2 ρ+ K∗+

ρ− (−ρ0 + ωI)/
√
2 K∗0

K∗− K
∗0 −φI


 ,

a = 1, ..., 8. (1)

Correspondingly, the pseudoscalar field matrix is usually
defined as (see (2) on top of the page) using the con-
ventional octet and singlet components (π8, η0) for the
isoscalar mesons. For definiteness, the SU(3) matrices will
be denoted T a (a = 1, · · · 8) and fulfill the normaliza-
tion condition Tr[T aT b] = δab/2. We complete this ma-
trix basis, by adding the unit matrix suitably normalized
T 0 ≡ 1/

√
6.

The physical states (ω, φ, η, η′) are generated from the
ideally mixed states by means of standard rotation angles

4 The sign in front of φI means that we define φI = −|ss〉

δV or δP for vector and pseudoscalar mesons. Correspond-
ingly, the rotation angles for the singlet and octet states
to the physically observed mesons are traditionally named
θV and θP . These well known relations can be found in
[1,12,4,10]. The connection between ideal and physical ω
and φ fields is treated heuristically in [4] and rigorously
in [9]. We recall for further use the traditional (one angle)
expression 

 η
η′


 =


 cos θP − sin θP

sin θP cos θP





π8

η0


 (3)

If fields undergo renormalization, the fields π8 and η0 in
the expression above should be understood renormalized
[4]. With a slightly liberalized, but obvious, notation, the
expressions above for V and P can also be written

V = V8 + V0 , P = P8 + P0 (4)

which exhibit their octet and singlet component combina-
tions, and show that nonet (U(3)) symmetry is implicitly
assumed.

2.2 Physical motivation
for Nonet Symmetry Breaking (NSB)

Referring to O’Donnell [12], NSB implies modifying (4) to

V = V8 + yV0, P = P8 + xP0 (5)

In this way, NSB changes the relative weight of the octet
and singlet parts in a priori both meson sectors. Refer-
ence [9] has recently performed a throughout study of NSB
in the vector sector and clearly concluded that data were
consistent with no such NSB (i.e. y = 1); it is therefore a
motivated choice to neglect vector NSB and state y = 1
definitely.

Another way to account for nonet symmetry breaking
is to assume that the singlet sector contains a component
other than the standard SU(3)/U(3) singlet; we name it
glue only for convenience. A possible coupling of the η/η′
doublet to glue can be accounted for [1] by means of an
additional angle γ, which is zero if one chooses to decouple
this doublet from glue



η

η′

η′′


 =




cos θP − sin θP 0

sin θP cos γ cos θP cos γ sin γ

− sin θP sin γ − cos θP sin γ cos γ







π8

η0

gg


 .

(6)
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Indeed, following the analysis of [1], we do not have
to introduce any coupling of the η meson to glue, which
would introduce an additional angle (β in [1]). The an-
gle γ produces a coupling of (only) the η′ meson to glue.
We have named η′′ the possible triplet companion of the
η/η′ mesons, and do not attempt to identify it5. If γ = 0,
one clearly recovers the usual mixing pattern for the η/η′
system by decoupling it from glue.

When fitting the data on radiative decays of light
mesons, the level of correlation between x and γ is found
such that assuming glue and exact nonet symmetry (x =
1), or assuming no glue (γ = 0) and some NSB (x � 0.9),
provide the same description of the data [1,8]. Therefore,
whether glue is required in order to describe the η′ prop-
erties is still a pending question which will be addressed
in the present paper (see Sect. 8), when an educated guess
about the value of x will be made. Let us note that the
level of glue can be as large as 20% if nonet symmetry
breaking is ignored [1,8] by setting x = 1; this conclusion
has been reached also by others [39,17,18].

Clearly, in order that our conclusion on this point be
of relevance, the exact meaning of x should be exhibited;
a framework as reliable as ChPT is appropriate. This also
motivates our goal of comparing our broken HLS–FKTUY
framework to ChPT.

2.3 Basics of the HLS model

We refer the reader to [2] for a comprehensive review of
the HLS model. A brief account can be found in [4]. We
only recall the main features here.

The HLS Lagrangian can be written LHLS = LA+aLV ,
where

LA = −f
2
π

4
Tr

[
DµξLξ

†
L −DµξRξ

†
R

]2
≡ −f

2
π

4
Tr[L−R]2

LV = −f
2
π

4
Tr

[
DµξLξ

†
L +DµξRξ

†
R

]2
≡ −f

2
π

4
Tr[L+R]2

(7)

a is a parameter which is not fixed by the theory and fπ is
the usual pion decay constant (92.41 MeV). The covariant
derivative is

DµξL,R = ∂µξL,R − igVµξL,R + ieξL,RAµQ (8)

where Aµ is the photon field, Vµ the vector meson field
matrix defined above and Q = Diag(2/3,−1/3,−1/3) is
the quark charge matrix, e is the unit electric charge and
g is the universal vector meson coupling [2]. Finally, one
generally chooses the “unitary” gauge, for which

ξR = ξ†
L = ξ = exp (iP/fπ). (9)

The standard VMD model is obtained by setting a = 2 in
the HLS Lagrangian. However, several studies of the pion

5 We shall not also attempt to include this additional singlet
in the Lagrangian model to be proposed for reasons which will
become clear at the end of this paper

form factor [40,41] favor a � 2.4, quite inconsistent with
2. A simultaneous analysis of light meson radiative decays
and vector meson leptonic decays [1,9] finds a � 2.4−2.5,
quite consistent with pion form factor studies.

The HLS Lagrangian is given in expanded form in [4]
(see (A1), where the pseudoscalar kinetic energy term has
been omitted). For the purpose of the present paper, it
should be noted that the pseudoscalar singlet field η0 un-
dergoes no interaction and only occurs in the (omitted)
kinetic energy term.

2.4 SU(3) breaking mechanism (FSB)
of the HLS model

SU(3) symmetry breaking (FSB) of the HLS Lagrangian
has been introduced by Bando, Kugo and Yamawaki [7]
(already referred to as BKY) and originates from [2,7].
Brief accounts and some new developments can be found
in [4,42], connected more precisely with the anomalous
sector [6]. We refer the reader to [1,8,7,4,42] for detailed
analyses of the properties of known variants of the BKY
breaking scheme. Here we will only sketch the so–called
new scheme detailed in [4]. Basically, the BKY breaking
of SU(3) symmetry is performed by modifying (7) in the
following way

LA,V = −f
2
π

4
Tr[(L∓R)(1 + (ξLεA,V ξ

†
R + ξRεA,V ξ

†
L)/2)]

2.

(10)
which has a smooth unbroken limit. The constant matrices
εA,V are given by Diag(0, 0, cA,V ). Defining the breaking
matrices XA,V = Diag(1, 1, 1 + cA,V ), these Lagrangian
terms can be written

LA,V = −f
2
π

4
Tr[(L∓R)XA,V (L∓R)XA,V ]. (11)

The expanded expression of the BKY broken HLS La-
grangian can be found in [4] (see (A5) in the Appendix).
One should note, among other properties of this breaking
mechanism, that the pseudoscalar singlet field η0 does not
undergo interactions with any of the other fields, as in the
unbroken limit. It contributes only to the kinetic energy
term in LA

LA = Tr[∂PXA∂PXA] + · · · (12)

The basic consequence of this BKY breaking mechanism
for FSB is thus to force a renormalization of the (bare)
pseudoscalar field matrix P , P → P ′

P ′ = X1/2
A PX

1/2
A , (13)

in order to restore the kinetic energy term to canonical
form. The field transform in (13) has a smooth limit when
XA → 1. Additionally, we have [7,4]

z ≡ 1 + cA =
(
fK

fπ

)2

= 1.495 ± 0.030 , (14)
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The quantity z was named &A in [1]. We shall also
use the notation Z = 1/z � 2/3 in the following, for
consistency with expressions written in [1]. It should be
noted [4], that the field renormalization ((13) and (14))
is required in order to recover the charge normalization
condition FK+(0) = 1.

The correspondence with the usual ChPT Lagrangian
is easy to establish. Indeed, concerning PS fields it turns
out to consider the L5 term of the L(1) Lagrangian to-
gether with L(0) and the correspondence is z = 1+
8L5m

2
K/f

2
π ; this gives a quite good approximation [20] of

the expression for z = [fK/fπ]2 and L5 � 2.14 10−3.
Thus, the BKY breaking mechanism outlined above,

results in a renormalization of the PS field matrix in clear
correspondence with ChPT expectations. It does not re-
sult likewise in a renormalization of the vector field matrix
[7,4]. However, the correspondence between the results of
Morpurgo [11] and the so–called K∗ model [1] could well
indicate that a renormalization of the vector fields is also
needed [9], but only shows up in the K∗ sector. In the
context of the present paper, we are actually independent
of any kind of symmetry breaking in the vector sector.
Let us only mention the main result of [9] which tells that
angular departures from ideal mixing is an appropriate
parametrization of the ω/φ system as long as one deals
only with on–shell vector resonances.

2.5 Nonet Symmetry Breaking (NSB)
of the HLS model

We aim here at providing a reasonable mechanism for NSB
in the PS sector within an effective Lagrangian. This was
required in order to describe successfully the set of ob-
served V Pγ and Pγγ radiative decays [1].

The main problem faced in the phenomenology of ra-
diative decays is the generalization of (13) to the case
where NSB is also active. At leading order, this is solely
determined by the influence of NSB on the kinetic energy
part of an effective Lagrangian.

If FSB were absent, we already know that P → P ′
8 +

xP ′
0 is the required field renormalization, i.e. the renor-

malization results in a rescaling of the singlet part of the
P matrix. This means that NSB should contribute specif-
ically to the kinetic energy term which would become

LA = Tr[∂P∂P ] + cTr[∂P0∂P0] · · · (15)

in the absence of FSB.
Let us now examine how we might incorporate the sin-

glet contributions into the HLS Lagrangian. As is well
known, the symmetry of the HLS Lagrangian is larger
than SU(Nf )×SU(Nf ), it is actually U(Nf )×U(Nf ).
However, this is unphysical. The extra vector U(1) symme-
try conserves baryon number and is thus desirable; more-
over, as remarked above, this is supported by the data.
However, the additional axial U(1) symmetry is a prob-
lem as it would imply either parity doublets or a ninth
light pseudoscalar (for reviews see [43–45] and recently
[21]). Therefore, reducing the symmetry of the HLS La-
grangian is desirable. Introducing the chiral field U ≡

ξ†
LξR = exp(i2P/fπ) [2], one obvious way is through de-
terminant terms [45],

L = LHLS +
µ2f2

π

12
ln detU · ln detU†

+λ
f2

π

12
ln det ∂µU · ln det ∂µU† (16)

where µ is a parameter with mass dimension and we have
introduced the dimensionless parameter λ to allow for
nonet symmetry breaking. Considering the chiral trans-
formation U → g†

LUgR, we see (16) is now only invariant
under SU(Nf )×SU(Nf ) or when gL = gR (i.e., UV ), as
desired. Rewriting the Lagrangian we have

L = LHLS +
µ2f2

π

12
Tr lnU · Tr lnU†

+λ
f2

π

12
Tr ln ∂µU · Tr ln ∂µU†. (17)

Now recalling (2) and (4), this can be rewritten

L = LHLS + L′
HLS ≡ LHLS +

1
2
µ2η2

0 +
1
2
λ∂µη0∂

µη0 (18)

as P0 = η01/
√
6 and Tr[T 1−8] = 0. Thus, through this

breaking of the UA(1) symmetry, the singlet acquires a
mass which is nonvanishing in the chiral limit and an ad-
ditional kinetic term. As can be clearly seen, this imple-
mentation of NSB only modifies the singlet contribution
to the Lagrangian kinetic energy (and mass term) without
changing the usual HLS interaction Lagrangian (see (A1)
in [4]).

It is quite interesting at this point to remark that the
NSB parameter we introduce can be identified with the
Λ1 coefficient of the L(1) contribution to the ChPT La-
grangian [19,20], as clear from Rel. (13) in [21] who carries
practically the same notations as ours. Therefore, the ki-
netic energy of the Lagrangian, which mostly determines
the PS field renormalization, meets all expectations from
ChPT.

Having shown how UA(1) breaking might lead to an
additional Lagrangian term, L′ as given in (18), we now
wish to explore the consequences of this. We are interested
in calculating the axial currents. This can be done through
an infinitesimal (axial) variation ∂µP

a → ∂µP
a + fπ∂µε

a

[46]

JA,a
µ ≡ ∂L

∂(∂µεa)
= fπ

∂L
∂(∂µP a)

= 2fπTr[T aXAT
bXA]∂P b + λfπδ

a0∂η0. (19)

We see the octet components are unchanged, while the
singlet component is affected by a factor of 1 + λ.

3 An effective Lagrangian model with FSB
and NSB at first order

For the purpose of the present study, we are interested
only in the PS kinetic energy part of the Lagrangian in



598 M. Benayoun et al.: VMD, the WZW Lagrangian and ChPT: The third mixing angle

(18), which needs to be diagonalized in order to get the
explicit transform P → P ′, from bare to renormalized
fields. Conversely, it is clear that, if NSB vanishes, the
kinetic energy of the Lagrangian is rendered canonical by
the transform in (13). Here, any reference to what can
happen in the V sector is totally irrelevant.

3.1 Diagonalization
of the effective Lagrangian kinetic energy

The Lagrangian in (18) has a non–canonical kinetic en-
ergy, which is precisely of the form given in (15) with
c = λ. Putting it into a suitable diagonal form is thus
required, in order to define the physical fields in terms of
the unphysical (bare) field and get the axial currents in
terms of the physical fields.

It is suitable to perform diagonalization in two steps.
The first step is simply to define an intermediate renormal-
ization step by P ′′ = X

1/2
A PX

1/2
A , which puts the nonet

symmetric part of the kinetic energy term into canoni-
cal form. Practically, this means that pion fields are un-
changed in this renormalization, while the kaon fields ab-
sorb a fK/fπ factor, as if NSB were absent. Concerning
isoscalar mesons, these (first step) renormalized fields can
be expressed in terms of the original (bare) fields through

π
′′
8

η′′
0


 = z


 B −A

−A C





π8

η0


 (20)

The parameters A, B and C depend only on the FSB
parameter z already defined and they are

A =
√
2
3

(z − 1)
z

� 0.16 ,

B =
(2z + 1)

3z
� 0.90 , C =

(z + 2)
3z

� 0.80 , (21)

where the numerical values correspond to z � 3/2. A
can be considered as the FSB characteristic size. C and
B differ at first order in this breaking parameter since√
2(B − C) = A. After this renormalization the kinetic

energy T is still non–canonical. Using (20), T can be ex-
pressed in terms of the (intermediate, i.e. double prime)
fields by

2T = [∂π′′
8 ]

2 + [∂η′′
0 ]

2 + λ[A∂π′′
8 +B∂η′′

0 ]
2. (22)

It is useful to define the FSB angle β:

cosβ =
B√

A2 +B2
, sinβ =

A√
A2 +B2

. (23)

Diagonalizing (22) gives the following renormalized fields

π′
8 = cosβπ′′

8 − sinβη′′
0

η′
0 = [sinβπ′′

8 + cosβη′′
0 ]

√
1 + λ(A2 +B2). (24)

These field combinations, which directly follow from the
eigensolutions of the quadratic form of (22), have a smooth

limit when both FSB and NSB tend to zero (π′
8 → π′′

8
and η′

0 → η′′
0 ); when FSB alone tends to zero (A → 0)

the limit is also smooth (π′
8 → π′′

8 and η′
0 → η′′

0
√
1 + λ).

However, the limit is not smooth when only NSB van-
ishes; indeed, (24) shows that the fields remain rotated
by an angle β which is non–zero if FSB is still active. In
order to cure this disease, one can choose as final renor-
malized fields linear combinations of the solutions in (24),
which have the desired limit properties and conserve the
canonical structure of T by the diagonalization. Using
v =

√
1 + λ(A2 +B2) − 1, these combinations are

π′
8 = (1 + v sin2 β)π′′

8 + v sinβ cosβη′′
0

η′
0 = v sinβ cosβπ′′

8 + (1 + v cos2 β)η′′
0 (25)

3.2 Field transformation at first order

We can use directly the exact transformation given by
(25); however, our breaking procedure is actually leading
order in all breaking parameters. This is illustrated by
having shown the connection between our breaking pro-
cedure and the L(0) + L(1) ChPT Lagrangian. Therefore,
it is meaningful to truncate the field tranform above at
leading order.

Truncating v at first order, we have v � λ(A2 +B2)/2
� λB2/2, and then


π

′
8

η′
0


 =



1 +

λ

2
A2 λ

2
AB

λ

2
AB (1 +

λ

2
B2)





π

′′
8

η′′
0




�



1 0

0 (1 +
λ

2
B2)





π

′′
8

η′′
0


 (26)

The last relation is obtained by removing breaking terms
of order greater than 1. Using (20) and (26), we can ap-
proximate the physical field (prime) combinations in terms
of the bare fields by


π

′
8

η′
0


 �



B −A

−A(1 + λ

2
B2) C(1 +

λ

2
B2)





π8

η0




�



B −A

−A(1 + λ

2
) C(1 +

λ

2
)





π8

η0


 (27)

This is the physical (first order) approximation which
corresponds to the field renormalization used in [1] and
recalled in (29). The last matrix expression in (27) is ob-
tained by remarking that λB2 differs from λ by terms of
order λA and then is legitimate to neglect them at first
order in further computations. The Aλ term in the lower
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leftmost matrix element is kept for consistency, but clearly
plays a negligible role.

Therefore, the field renormalization on which the study
of [1,8,9] relies is obtained from a Lagrangian model by
truncating at first order in the breaking parameters. This
provides an excellent fit to all light meson radiative decays,
as can be seen from [1] and as will be shown below (see
Sect. 8.2). We have checked that a fit to radiative decays
performed as in [1] using the exact field transformation in
(25) instead of its first order approximation in (27) gives
indeed an improvement in fit quality, but negligible6. From
these expressions, it is also clear that the NSB parameter
x [1] is actually

x = 1 − λ

2
B2 � 1√

1 + λB2
=⇒ λ � 0.20 − 0.25, (28)

using the reference value for x (see (34)). We see the pa-
rameter λ is small. In determining the accuracy and sys-
tematic errors, the neglected orders of magnitude should
be estimated from the values of A [FSB] and (1−x) [NSB].
It should be noted that, even if x carries prominently the
information of NSB, it is somehow influenced by FSB as
B = 1 +A/

√
2.

In what follows we shall approximate the change of
fields by its expression at first order in the breaking pa-
rameters, which can be written

P = X−1/2
A (P ′

8 + xP
′
0)X

−1/2
A (29)

The accuracy of this expression relative to the Lagrangian
defined above can be estimated at � 5% by analyzing the
magnitude of the neglected terms in (27).

4 The VMD description of η/η′ → γγ decays

Following FKTUY [6], the anomalous U(3) symmetric La-
grangian describing PV V interactions is

L = − 3g2

4π2fπ
εµνρσTr[∂µVν∂ρVσP ]. (30)

The PV γ and Pγγ transitions amplitudes are obtained
from this Lagrangian and the non–anomalous HLS La-
grangian, needed in order to describe the direct transition
of vector mesons to photons. This non–anomalous HLS
Lagrangian is given in its expanded form in [4]. It should
only undergo the field renormalization of (29), valid at
first order in the (two) breaking parameters.

The HLS model contains the Vector Meson Dominance
(VMD) assumption (for a review see [47]); it thus gives a
way to relate the radiative decay modes V Pγ to each other
and to the Pγγ decays for light mesons, by giving a precise
meaning to the equations sketched in Fig. 1.

6 The improvement is larger if ones replaces the PDG value
[10] for the rate φ → η′γ by the mean value of all presently
available measurements!

,

Fig. 1. Graphical representation of the relation among various
kind of coupling constants. V and V ′ stand for the lowest lying
vector mesons (ρ0, ω, φ); the internal vector meson lines are
propagators at s = 0 and are approximated by the correspond-
ing tabulated [10] masses squared

Propagating the field renormalization in (29) down to
the FKTUY Lagrangian of (30) gives

L = − 3g2

4π2fπ
εµνρσTr[∂µVν∂ρVσX

−1/2
A P ′X−1/2

A ]. (31)

Then, the VVP Lagrangian is changed in a definite way
by the renormalization procedure.

The expanded form of the Lagrangian in (31) is given
in the Appendix of [1]. The expressions for the two–photon
decay widths of the η and η′ mesons can be derived from
this and the non–anomalous Lagrangian. They are [1]

Gηγγ = − αem

π
√
3fπ

[
5 − 2Z

3
cos θP −

√
2
5 + Z
3

x sin θP

]
,

Gη′γγ = − αem

π
√
3fπ

[
5 − 2Z

3
sin θP +

√
2
5 + Z
3

x cos θP

]
,

Gπ0γγ = −αem

πfπ
, (32)

where Z = 1/z = [fπ/fK ]2. Actually, the last expression
in (32) is a normalization condition which allows us to fix
the numerical coefficient in (31). It is clear that (32) gives
the two–photon decay widths in terms of fπ, fK , x and
only one mixing angle, θP . This will be frequently referred
to as the wave–function mixing angle (see (3)). As normal
these equations do not (and should not) depend on the
vector meson parameters (g and δV ).

Thus, using standard Feynman rules, the HLS model
provides definite expressions for the two–photon couplings
of the pseudoscalar mesons, through its anomalous (FK-
TUY) sector. These expressions exhibit the traditional
form [13,14,49] originally obtained through Current Al-
gebra. These couplings are related to partial widths by

Γ (X → γγ) =
M3

X

64π
|GXγγ |2 , X = π0, η, η′ . (33)

As a test, one can fit the parameters x and θP solely
through radiative decays of the type V Pγ and use these
values and their associated errors to predict the values
for the two–photon decay widths of the η and η′ mesons.
The fit values used for these computations [1] are x =
0.917 ± 0.017 and θP = −10.41◦ ± 1.21◦. The results are
given in Table 1 and clearly illustrate that the expressions
in (32) are valid and that the V Pγ processes accurately
predict the two–photon decay widths.

Stated otherwise, one does not need more than one
angle (θP ) in order to describe the η and η′ radiative de-
cays and this receives an especially strong support from all
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Table 1. Partial decay widths of the η/η′ mesons, as reconstructed solely from fits to the radiative
decays V Pγ (leftmost data column) and their direct measurements [10] (second data column). The
third data column displays fit quality parameters when using the corresponding η measurement.
The rightmost data column gives the correlation coefficient (x, θP ) in the corresponding case

Mode VMD Fit PDG Comment Global Fit Quality (x, θP )
Prediction Value χ2/dof Probability Correlation

0.514 ± 0.026 γγ 11.07/10(35%) −0.34
η → γγ [keV] 0.464 ± 0.026 0.46 ± 0.04 PDG mean 9.14/10(52%) −0.49

0.324 ± 0.046 Primakoff 14.82/10 (13%) −0.55

η′ → γγ[keV] 4.407 ± 0.233 4.27 ± 0.19 PDG mean

V Pγ modes. Additionally, despite claims [13,35,36], this
angle is found to be � −10◦, in apparent (as will be seen)
inconsistency with the ChPT expectation of � −20◦ [13,
35,34].

A comment is of relevance concerning the data on η →
γγ. One clearly sees that the V Pγ modes considered alto-
gether clearly prefer the PDG recommended (mean) value
to either of the homogeneous reported measurements.
Therefore, one may guess that the (single) Primakoff effect
measurement and the (fourfold) γγ measurement, both
suffer from systematic errors in opposite directions. This
guess is supported by the recent direct measurement of
the η → γγ branching fraction [48] 39.21% ± 0.3%, quite
consistent with the PDG mean value. We shall revisit this
issue in Sect. 8.

In order to substantiate the relative quality of the three
data given in Table 1, we have redone the global fit, as
described in [1], changing only the η → γγ data. The cor-
responding fit information is given in the rightmost pair
of data columns in Table 1. Even if the fit probabilities
are all quite acceptable, it is clear that the PDG recom-
manded value is indeed preferred by the full set of V Pγ
decay modes. For this reason we use, from now on, the
corresponding best fit results as reference values:

x = 0.902 ± 0.018 , θP = −10.38◦ ± 0.97◦ (34)

5 The WZW description
of η/η′ → γγ decays

Starting from broken HLS and FKTUY, the VMD model
of [1] recovers the traditional form for the two–photon de-
cay amplitudes, (i.e. the one mixing angle expressions of
Current Algebra [13,14,49]). Using these standard expres-
sions, one indeed gets through identification with our (32)

fπ

f8
=

5 − 2Z
3

,
fπ

f0
=

5 + Z
6

x , (35)

where Z = [fπ/fK ]2, and f0,8 denote the (Current Alge-
bra) singlet and octet decay constants; we have already
defined θP , the (single) mixing angle occurring in this ap-
proach. The f0,8 are named γγ decay constants in [31].

It is easy to check that (32) and (35) can be derived
directly from the WZW Lagrangian [25,26]. Indeed, this
can be written

LWZW = − Nce
2

4π2fπ
εµνρσ∂µAν∂ρAσTr[Q2P ] (36)

(with Nc = 3) where Q = Diag(2/3,–1/3,–1/3) is the
quark charge matrix, A is the electromagnetic field and
P is the bare pseudoscalar field matrix. Changing to the
renormalized field P ′ through (13) allows us to recover
exactly the couplings in (32).

This illustrates clearly that, what is named f8 in the
Current Algebra [49] expressions for η/η′ decays to two
photons, can be expressed solely in terms of fπ and fK ,
in a way which fixes its value to f8 = 0.82fπ. Correspond-
ingly, we have f0 = 1.17fπ which includes a correction of
approximately 10% due to nonet symmetry breaking. The
fact that the WZW Lagrangian leads to the same results
as the FKTUY Lagrangian simply states their expected
equivalence when deriving two–photon decay amplitudes.
Stated otherwise, the structure of (32) depends only on
the BKY breaking XA, with a small influence of PS NSB.

However, the SU(3) sector of Chiral Perturbation The-
ory (ChPT) [13,34,35] is well known to predict f8/fπ �
1.25 and a mixing angle of � −20◦. Then, the question is
whether there is an inconsistency with respect to ChPT,
or if there is a mismatch among definitions in ChPT (f0,8)
and in the VMD/WZW approach (f0,8), after symmetry
breaking. More precisely, the question is whether f8 and
f0 have actually the meaning of decay constants.

Before closing this Section, it is interesting to compare
our expressions for f0,8 with the corresponding ones in
[31] and [32]. Indeed, by identification of our (35) with
(26), (31) and (32) of [31], we get

T̃ss(0, 0)

T̃π0(0, 0)
=

[
fπ

fK

]2

=
2
3

(37)

for the ratio of their reduced amplitudes. Their own nu-
merical estimate for this ratio is 0.62, in quite good
agreemeent with ours. In order to reach (37), we have
stated x = 1 in our own expressions. So, one can consider
that the present (35) extends the results of [31] (and [32])
to the case when nonet symmetry is broken; the correction
is however minor in this realm.
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6 A ChPT description of η/η′ → γγ decays

We have seen above that, in the VMD procedure devel-
oped in [1,4,8], the expressions for f8, f0 and the mixing
angle are the same as those obtained from the matrix ele-
ments for 〈γγ|LWZW |η〉 and 〈γγ|LWZW |η′〉. We have de-
noted the parameters, obtained in this manner, f0,8 and
θP . In ChPT, however, the corresponding quantities (f0,8,
θ8, θ0) are defined through other matrix elements, namely
〈0|∂µJ8,0

µ |η〉 and 〈0|∂µJ8,0
µ |η′〉, where the J8,0 are the ax-

ial currents. It seems, however, traditionally admitted [13,
35,51] that both sets of definitions necessarily coincide. It
is this last property which is addressed now.

6.1 Usual ChPT parameters from broken VMD

The axial current defined by (19),

Ja
µ = −2fπ

{
Tr[T aXA∂µPXA] + δa0λ∂µP0]

}
(38)

can be rewritten in terms of the physical fields, through
the transformation in (29) (and also (27) for the isoscalar
sector). We can write the matrix elements 〈0|Ja

µ |P ′a〉 for
a = 1, · · · 7 and get the corresponding decay constants:

〈0|Jπ/K
µ |π/K(q)〉 = ifπ/K qµ (39)

for pions and kaons, taking into account the expression for
z. For the isoscalar sector, we get

J8
µ =

1 + 2z
3

fπ∂µπ
R
8 +

√
2
3

(1 − z)fπ∂µη
R
0 ,

J0
µ =

√
2
3

(1 − z)fπ∂µπ
R
8 +

2 + z
3
fπx(1 + λ)∂µη

R
0 , (40)

with obvious notations, and where we have used z =
[fK/fπ]2 = 1/Z. From above, we know that x = 1/√
1 + λB2, is influenced by FSB (B2 � 0.8). Moreover,

the occurrence of simply (1+λ) – without any dependence
upon z – is certainly due to the fact that NSB in the La-
grangian of (18) does not undergo SU(3) breaking effects.
Therefore, it is consistent to consider that 1 + λ � 1/x2

and make the (first order) approximation x(1+ λ) = 1/x.
One should note the occurrence in (40) of singlet field

contributions to the octet axial current and, conversely,
of octet field contribution into the singlet axial current.
Additionally, these terms vanish in the limit of unbroken
SU(3) flavor symmetry (z = 1) as expected.

These axial currents allow to define the following ma-
trix elements

〈0|J8
µ|π8(q)〉 = if8qµ , 〈0|J0

µ|η0(q)〉 = if0qµ
〈0|J8

µ|η0(q)〉 = ib8qµ , 〈0|J0
µ|π8(q)〉 = ib0qµ (41)

with

f8 =
(1 + 2z)

3
fπ = (1.33 ± 0.02)fπ ,

b8 =
√
2
3

(1 − z)fπ = (−0.24 ± 0.01)fπ

f0 =
(2 + z)
3x

fπ = (1.29 ± 0.03)fπ ,

b0 =
√
2
3

(1 − z)fπ = (−0.24 ± 0.01)fπ (42)

where the quoted errors are statistical only. So, at leading
order in NSB, we have b0 = b8.

One readily observes a mismatch between the VMD/
WZW definition for f8 and f0 (see (35)) and the ChPT
definitions above; this mismatch is both algebraic and nu-
merical. Otherwise, this f8 corresponds to the standard
ChPT definition and it has its expected value [13,34,35,
51].

In order to switch to the matrix elements for
〈0|J0,8

µ |η/η′〉, we use (3) together with the notations of
Kaiser and Leutwyler [19,20]

〈0|J0,8
µ |η/η′(q)〉 = iF 0,8

η/η′qµ (43)

and find

F 8
η = F 8 cos θ8 = f8 cos θP − b8 sin θP

= (1.269 ± 0.008)fπ

F 8
η′ = F 8 sin θ8 = f8 sin θP + b8 cos θP

= −(0.472 ± 0.021)fπ

F 0
η = −F 0 sin θ0 = b0 cos θP − f0 sin θP

= (0.001 ± 0.023)fπ

F 0
η′ = F 0 cos θ0 = b0 sin θP + f0 cos θP

= (1.315 ± 0.026)fπ (44)

using the reference parameter values for x and θP of (34).
It should be stressed here that F 0/8 and θ0/8 differ from
f0/8 and θP only by terms of order b0 and b8. These cannot
be neglected consistently if one keeps terms of order sin θP ,
which are numerically of the same order. Equations (44)
lead to

F 8 = (1.36 ± 0.01)fπ F 0 = (1.32 ± 0.03)fπ

θ8 = −20.40◦ ± 0.96◦ θ0 = −0.05◦ ± 0.99◦ (45)

In the exact SU(3) limit (z = 1), the expressions in (44)
imply θ0 = θ8 = θP . Thus, the difference between them
is, indeed, an effect of SU(3) flavor symmetry breaking,
with only a marginal (numerical) influence of the nonet
symmetry breaking parameter x.

Now, the values given in (45) can indeed be compared
with ChPT expectations, as these expressions correspond
to the standard ChPT definition of mixing parameters.
The value for F 8 compares impressively to the parameter
free prediction of [20] (1.34fπ with no quoted error). The
value for F 0 is harder to estimate theoretically because of
its scale dependence; however, from the information given
in [19,20], F 0 � 1.3fπ seems in an acceptable range. The
value θ8 = −20.40◦ ±0.96◦ is impressively consistent with
all reported ChPT expectations (for example, −20◦ ± 4◦
from [34], −20.5◦ from [19]).

For θ0 the situation is unclear because the accuracy
of the reported theoretical expectation [19] θ0 � −4◦ is
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lacking. Then, it is not possible to compare rigorously our
result in (45) with it; we show just below that the differ-
ence with ChPT (if any) is due to non–leading terms in
breaking parameters.

6.2 Further comparison of VMD with ChPT

One can ask about the correspondence of the expressions
for the ChPT parameters coming from our VMD
Lagrangian model of currents with their usual ChPT ex-
pressions in terms of fπ and fK . We show here that all
expressions we can get in our HLS–FKTUY approach and
all reported ChPT expectations to which they can be com-
pared coincide surely at leading order in breaking parame-
ters. Let us illustrate with a few examples, mostly referred
to in [19,21].

From (44), one can easily derive

[F 8]2 = [F 8
η ]

2 + [F 8
η′ ]2

=
[
(1 + 2z)

3

]2

f2
π +

2
9
(1 − z)2f2

π . (46)

Let us define

z = 1 + 2ε , x = 1 + δ . (47)

Neglecting terms of order ε2, we have ε = fK/fπ−1 � 0.22
and δ = x − 1 � −0.10 as values for these perturbations
to exact SU(3) flavor and nonet symmetries. Using (47),
(46) gives

[F 8]2 =
[
1 +

8ε
3

+
8ε2

3
+ O(ε3)

]
f2

π . (48)

which can be rewritten

3[F 8]2 = 4f2
K − f2

π + O(ε2). (49)

This gives the same leading term as its ChPT expression
(see (11) in [19]).

Concerning F 0, (44) give at leading order

[F 0]2 =
[
(1 +

4ε
3
)(1 − 2δ) + O(ε2)

]
f2

π

=
2f2

K + f2
π

3
(1 − 2δ) + O(ε2) (50)

which compares quite well with the Feldmann expression
[21]

[F 0]2 =
2f2

K + f2
π

3
+ f2

πΛ1 (51)

from which one derives, neglecting terms of order O(εδ)

Λ1 = −2δ =
1
x2 − 1 = 0.20 ± 0.04 (52)

at the mass scale defined by radiative decays. One should
note that this implies that Λ1 is nothing but what was
named λ as it should since nonet symmetry breaking is

done in accordance with the ChPT L1 Lagrangian. Equa-
tion (52) may serve to estimate, at the same scale, the
other OZI violating parameters [19,21] Λ2 and Λ3 from
phenomenology7:Λ3 � −0.03 ± 0.02, Λ2 � 0.31 ± 0.02.
These quantities are certainly scale dependent [19,20],
however this dependence is expected smooth [21].

On the other hand, (44) also gives

F 0F 8 sin (θ8 − θ0) = f8b0 + f0b8. (53)

Using the expressions in (42) and in (47), this is

3F 0F 8 sin (θ0 − θ8) = 2
√
2(f2

K − f2
π)

[
1 + ε− δ

2

]
. (54)

which coincides at leading order with the corresponding
quantity given in [19] (see (13) there). One should note,
however, that the leading correction is increased with re-
spect to neglecting deviations from nonet symmetry, from
22% to 27%. On the other hand, one can check that

F 0 = 1 +
2
3
ε , and F 8 = 1 +

4
3
ε (55)

in units of fπ, which also corresponds to the expecta-
tion that F 0 and F 8 differ only at first non–leading order
[19]. Of course, leading and non–leading in our expressions
refers to the small perturbation parameters of our model,
ε and δ defined above.

Therefore, at first order in breaking parameters, all
expressions (and numerical values) deduced from our HLS
broken Lagrangian meet all expectations of ChPT at the
same order, namely, for F 0, F 8, θ8 and θ0. Furthermore,
using our fit [1] to radiative decays, we can provide Λ1
with a reliable value.

One should however note that higher order corrections
play some role; indeed, at leading order, F 0 and F 8 differ
by about 15% (see (55) just above), while the numerical
value in (45) gives a difference of only � 3%.

The single divergence – if any – concerns θ0. However,
this is fully due to higher order corrections, the ChPT
estimates of which are still missing. Indeed, this can be
checked directly on (53) which gives θ0 −θ8 � −20◦, while
(54) gives θ0 − θ8 � −15◦, as obtained in [19,20], i.e.
−14◦ to −16◦. With this respect, it should be remarked
that (54) undergoes higher order corrections of more than
20%.

The importance of having an improved theoretical es-
timate of θ0 should be stressed. Indeed, it should allow to
reject several modellings (see Table 1 in [21]), as the values
proposed for θ0 range between 0◦ and −30◦. Our broken
HLS–FKTUY framework points out that the condition
θ0 � 0 is well fulfilled by all data on radiative decays, as
will be further illustrated in Sect. 8.2.

6.3 Relations between θ8, θ0 and θP

Equations (44) and (42) together give

tan θ8 =
f8 tan θP + b8
f8 − b8 tan θP = tan (θP + ϕP ) ,

7 The symbol � is used because theoretical uncertainties of
the relations among the Λi are not quoted
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tanϕP =
√
2
(1 − z)
(1 + 2z)

(56)

which corresponds to ϕP � −10.02◦, not influenced by
NSB at this order. On the other hand, the same equations
provide also

tan θ0 =
f0 tan θP − b0
f0 + b0 tan θP

= tan (θP − ψP ) ,

tanψP =
√
2
(1 − z)
(2 + z)

x (57)

Equations (56) and (57) together give

θ8 + θ0 = 2θP +
√
2
9

(1 − z)2 +
√
2
3

(1 − z)(1 − x) (58)

up to terms of orders O[(1 − z)3] and O[(1 − z)2(1 − x)],
which represent a few percents only. This makes explicit
the connection between VMD/WZW and ChPT angles.
Th. Feldmann has recently obtained a weaker form of the
above relations in [21] (see its (84)), in the sense that NSB
was neglected.

Let us now consider the condition θ0 = 0 as exact,
which is clearly close to real life (see (45)). One can easily
check that this condition can be cast into the form

tanϕP = K tan θP , (59)

where K = (2 + z)/[(1 + 2z)x] differs from unity by only
3%, which is likely well inside our (systematic) model er-
rors. Therefore, (56) can be written

tan θ8 = tan [θP + arctan (K tan θP )] � tan 2θP . (60)

Thus we have θP = θ8/2 already with an accuracy of order
1.5%. A slightly more accurate expression is obtained by
expanding the relation above

θ8 � (K + 1) θP , (61)

taking into account the (observed) smallness of θP . So,
at the level of accuracy permitted by the data, there is
a strict equivalence in using θ8 or θP . Furthermore, phe-
nomenology indicates that higher order corrections should
decrease the magnitude of θ0.

6.4 Estimate of the quark mass ratio

Since there is now some reason to trust the reliability of
our numerical results in (44), we can use the following
equation [19]

3
{
[F 8

ηMη]2 + [F 8
η′Mη′ ]2

}
= 4[fKMK ]2

2S
(S + 1)

− [fπMπ]2(2S − 1) (62)

in order to extract the ratio S of the strange quark mass
to the mean value of the non–strange quark masses (S =
ms/m̂). This equation is actually second degree and thus

potentially admits a spurious solution. The Mi terms are
the corresponding meson masses.

Using the mass values for neutral mesons and the in-
formation given in [10], we get

ms

m̂
= 21.23 ± 2.42 or

ms

m̂
= 2.5+1.3

−0.7 (63)

The first solution compares well to the expectation of Cur-
rent Algebra (25.9) and to the estimate (26.6) of [19]; it is
also in impressive agreement with the A. Pich estimate [36,
37] 22.6± 3.3. The magnitude of the uncertainties (about
10%) is dominated by the errors on decay constants; er-
rors due to choosing the neutral masses for the relevant
mesons have not been accounted for.

7 VMD, the WZW Lagrangian and ChPT

We have shown in Sect. 3 that the HLS model can be
consistently extended in order to include nonet symmetry
breaking along with SU(3) breaking effects. The connec-
tion with the ChPT Lagrangian L0 + L1 has been exhib-
ited and proved successful. It has been shown reasonable
to restrict to first order effects. The analysis of our HLS–
FKTUY model with respect to ChPT, tells us that the
BKY SU(3) breaking mechanism [7,4] is justified. The
most delicate assumption of the model for radiative de-
cays of [1] is the PS field renormalization in (29); the di-
agonalization procedure above has shown that it is indeed
perfectly justified at leading order in breaking parameters.

Instead of radiative decays which exhibit a huge sensi-
tivity [1] to NSB (the parameter x), the basic ChPT pa-
rameters just considered exhibit only a marginal influence
of NSB.

Comparing the two sets of parameters, both derived
from within a common VMD framework, the single clear
conclusion is that there is a mismatch between the VMD/
WZW customary definitions of decay constants and mix-
ing angles and that currently stated within ChPT. Before
commenting on phenomenological issues, we first show
that this mismatch is a pure effect of SU(3) breaking which
could have been foreseen since the work of Kaiser and
Leutwyler [19,20].

7.1 From ChPT back to VMD/WZW

The question of whether one can move back from the
standard angles and decay constants of (extended) ChPT
to the VMD/WZW framework is, of course, of special
relevance. Indeed, we have already shown that, starting
from our VMD/WZW model, the observed mixing angle
of � −10◦ (for instance) was quite consistent will all ex-
pectations of ChPT, especially θ8 � −20◦. The proof of
the converse, i.e. deriving the WZW expressions from the
axial anomaly, can be done on general grounds and is out-
lined in the Appendix. We detail here the algebra in order
to illustrate the connection between ChPT concepts and
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the standard VMD parameters, and also test the consis-
tency of having used first order approximation for the field
transform.

The basic idea is to remark that the divergence of axial
currents is given by the axial anomaly at q → 0. In the
case of two–photon decays, it takes the form

〈0|∂µJ
µ,a|γγ〉 = N〈0|Tr[T aFαβF̃

αβ ]|γγ〉 , a = 0, 3, 8
(64)

where the axial currents are given in (19), Fαβ is the pho-
ton field strength and F̃αβ its dual, T a are the SU(3) flavor
matrices and N is a normalization factor. Saturating the
left–hand side of this expression with the nonet P of the
(lightest) pseudoscalar mesons, we have

〈0|∂µJ
µ,a|γγ〉 =

∑
P

〈0|∂µJ
µ,a|P 〉 1

M2
P

GPγγ

= N Tr[T aQ2] , a = 0, 3, 8 (65)

where we have denoted by GPγγ the decay amplitude of
pseudoscalar mesons to two photons and Q is the quark
charge matrix.

As we limit the sum to the lowest pseudoscalar mesons,
the single intermediate state for ∂J3 is P = π0 and then

〈0|∂J3|π0〉 1
M2

π0

Gπ0γγ = N Tr[T aQ2] (66)

With 〈0|∂J3|π0〉 = fπM
2
π0 , and because the last term in

(32) gives Gπ0γγ , (66) provides the normalization N =
6αem/π.

For ∂J0 and ∂J8, there are two possible intermediate
states (the η and η′ mesons) and (65) gives:

F 8
ηGηγγ + F 8

η′Gη′γγ =
αem

π
√
3
,

F 0
ηGηγγ + F 0

η′Gη′γγ =
2
√
2αem

π
√
3
, (67)

Inverting these relations gives

Gηγγ =
αem

π
√
3

1
F 8

ηF
0
η′ − F 0

ηF
8
η′

[
F 0

η′ − 2
√
2F 8

η′

]

Gη′γγ =
αem

π
√
3

1
F 8

ηF
0
η′ − F 0

ηF
8
η′

[
−F 0

η + 2
√
2F 8

η

]
(68)

These expressions are the η/η′ → γγ amplitudes in
terms of the Kaiser–Leutwyler parameters F 0/8 and θ0/8.
They can be reexpressed in terms of θP and f0, f8, b0, b8
by means of (44) and become

Gηγγ =
αem

π
√
3

1
f0f8 − b0b8

[
(b0 − 2

√
2f8) sin θP

+(f0 − 2
√
2b8) cos θP

]
,

Gη′γγ =
αem

π
√
3

1
f0f8 − b0b8

[
− (b0 − 2

√
2f8) cos θP

+(f0 − 2
√
2b8) sin θP

]
. (69)

These expressions exhibit the standard Current Alge-
bra structure. Having denoted the coefficients there by
f0,8, we clearly have

1
f8

=
f0 − 2

√
2b8

f0f8 − b0b8 ,
1
f0

= − 1
2
√
2
b0 − 2

√
2f8

f0f8 − b0b8
(70)

This proves that f8 and f0 would coincide with the
η/η′ decay constants f8 and f0, only if b0 and b8 were
zero, i.e. if SU(3) were not broken; in this case we would
have f8 = xf0 = fπ. Using the expressions in (42) and
truncating at leading order in (z − 1) and (x − 1), it is
easy to check that we get the fi as given in (35).

The expressions in (70) are interesting in this regard:
they clearly show that the mismatch originates from the
fact that b0 and b8 are non–zero when SU(3) symmetry
is broken (z �= 1), which is basically the point of [19,
20]. Therefore, the usual expressions of Current Algebra
do not directly give the isoscalar meson decay constants
when SU(3) is broken.

Nevertheless, this does not prevent Current Algebra
from being the most economic formulation for the study
of radiative decays, as it involves only two parameters (θP
and x) instead of four highly correlated parameters (see
(68)). Moreover, we shall see in the next Section how x and
θP are actually related by the observed smallness of θ0.
This means that the Current Algebra formulation, suit-
ably used, depends (practically) on a single parameter;
this can be chosen equivalently as either of x (or Λ1) or
θP . In this case, the two–photon decay amplitudes for η
and η′ become a constrained system (2 equations, 1 pa-
rameter)!

If one takes into account the smallness of θ0 expected
from ChPT and from VMD estimates (see (44)), (68) pro-
vides quite an interesting result

Gηγγ +Gη′γγ tan θ8 =
α

π
√
3

1
F 8 cos θ8

+ O(θ0),

Gη′γγ =
α

π
√
3
2
√
2

F 0 + O(θ0), (71)

together with θP = θ8/2 + O(θ0).

7.2 Phenomenological consequences

The consequences of the mismatch mentioned above are
rather practical. Usually, the experimental determination
of the pseudoscalar parameters (f0, f8, θ) is derived using
the (quite standard) VMD/WZW (32), which are nothing
but the former equations of Current Algebra [13,14,49].

However, generally, the model reconstruction quality
[38,51] is defined by comparing fit results for f8, f0 or
θP with ChPT numerical expectations (F 8, F 0, θ8). This
leads to highly confusing situations as shown by the dis-
cussions in [31,50] when justifying the value found for the
mixing angle (θP � −13◦) which mainly differs from our
because of their neglecting NSB in the PS sector. The
problem is strictly the same with decay constants [31].
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Sometimes, numerical ChPT expectations for F 8 are
attributed to what has been named f8 in order to to con-
strain the WZW two–photon equations [13,14,51]; this
mechanically (and artificially) pushes the mixing angle to
� −20◦, as can be seen from Fig. 1 in [15].

What has been illustrated above is that such a phe-
nomenological approach and such a theoretical treatment,
are intrinsically inconsistent, as also noted by [21]. Stated
otherwise, it is meaningless to compare (or constrain) the
Current Algebra equations (given also by (32)) using the
PS decay constants of ChPT or the value of the ChPT
angle θ8, as traditionally done.

To be more specific, we have proved that f8 = (0.82±
0.01)fπ, f0 = (1.17 ± 0.02)fπ and a (single) θP � −10◦
which describes the η/η′ mixing at the wave function level
are consistently derived from VMD and/or the WZW La-
grangian after applying FSB (and NSB). Moreover, all this
is perfectly consistent with all ChPT expectations at first
order in breaking parameters: mainly F 8 � (1.25−1.35)fπ

and θ8 � −20◦. VMD has been able to provide new infor-
mation (θ0 � 0 and F 0 � 1.3fπ, Λ1 � 0.20) of relevance
for ChPT. A more refined comparison should wait until
higher order ChPT estimates become available.

As a side remark, one should also recall, from [4],
that SU(3) breaking does not affect the box anomalies
for γπ+π−η/η′. It is clear, however, from (39) in this ref-
erence, that nonet symmetry breaking can play some (nu-
merically) minor role. Thus, all existing analyses [38,51] of
the anomaly equations [49] have to be redone from scratch,
at least for consistency, knowing that the expected param-
eter values are not (directly) the ChPT ones. Related to
this point, it is clear now that the Chanowitz equations
[49], correctly understood, do not point any longer to a
failure of QCD, as incorrectly deduced in [38] because of
the confusing angle problem mentioned above.

8 Feedback from the ChPT parametrization

The ChPT parameter values we have obtained (see (45))
allow for several remarks of importance which are to be
discussed in this Section.

8.1 A hidden relation between x and θP /θ8

At the level of accuracy permitted by the whole set of
radiative decays of light mesons, the results gathered in
(45) indicate that θ0 = 0 is well fulfilled experimentally.
At its level of accuracy (θ0 = −0.05◦ ± 1◦), one can even
ask oneself whether this relation is only approximate; this
means that θ0 does not undergo significant effects of SU(3)
breaking, as opposed to θ8 and θP . As remarked in [19],
this also means that, in the sense that |η〉 is orthogonal to
J0|0〉, the η meson is practically pure octet. But as shown
above, the same |η〉 happens also to be a mixture of |π8〉
and |η0〉 with an angle θP � −10◦. This illustrates the
duality of definitions from another point of view.

The numerical result θ0 = 0 indicates that the state
mixing angle θP fulfills

tan θP =
√
2
(1 − z)
(2 + z)

x (72)

to good accuracy; this calls for several important remarks.

– By providing a definite value for x, (72) allows to ad-
dress the issue of a possible glue content inside the η′
(see, for instance, Table II in [1] or Fig. 2 in [8]). In-
deed, this equation is purely a consequence of η physics
and [1,8] have shown that no glue was required inside
the η meson. As a matter of consequence, (72) is not
influenced by a possible glue content in the η′ meson.

– (72) reveals an unexpected algebraic relation8 between
the mixing angles θP /θ8 and the nonet symmetry
breaking parameter x. It will be checked explicitly in
Sect. 8.2 using the whole set of radiative decays.

– (72) allows, for the first time, for a constrained fit to
solely the η → γγ and η′ → γγ partial widths. In-
deed, symmetry breaking effects in terms of singlet
and octet components are completely determined by
the BKY procedure, as shown in Sect. 5. Only x is still
free. Now, (72) tells that θP is not an independent ad-
ditional parameter and is fixed by the value x. So, the
single undetermined parameter is either θP or x.
We have performed the exercise and got θP = −10.34◦
±0.22◦ (corresponding to x = 0.903±0.017); using the
PDG value of the η rate – confirmed by the recent mea-
surement of [48]. We get χ2/dof = 0.8 10−4/1 (a 99%
probability), while the Primakov measurement gives
χ2/dof = 6.99/1 (0.8% probability), and the γγ mea-
surement gives χ2/dof = 3.89/1 (4.8% probability).
So, the correlation is indeed observed; the reconstruc-
tion quality indicates however that the Primakoff mea-
surement is affected by large systematics; this effect is
present to a lesser extend in the measurement of the γγ
Experiments. Therefore, a new accurate measurement
of η → γγ would be welcome.

To our knowledge, it is the first time such a relation
as (72) is reported. If z = 1 (then all θ’s vanish), x does
not vanish but becomes unconstrained. Traditionally, the
wave–function mixing angle is expressed in terms of PS
meson masses; our expression (72) tells that the mixing
angle can also be expressed as a function of fK/fπ with
some influence of NSB.

From the point of view of ChPT, it should be stressed
that θP is the variable which emphasizes the most the exis-
tence of nonet symmetry breaking; using the terminology
of ChPT, it is directly proportional to x = 1/

√
1 + Λ1,

which exhibits the scale dependence of θP .

8 As a matter of consequences, there is a numerical correla-
tion (x, θP ) in fit procedures, which has been completely missed
in our study in [1]. The correlation coefficient is given in Ta-
ble 1. This is smaller than what could have been expected,
but the sign is consistent, if one remarks that θP and x carry
opposite signs
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Table 2. Radiative decay branching fractions. The first two
data columns display the fit results using the K∗ model of [1,
8]; in the first data column (present work) the x–θP of (72) is
switched on while, in the second one, it is not. The data for
η → γγ is the recommended value [10]. The last data column
displays the accepted values from the 1998 Review of Particle
Properties [10]

Process x and θP x and θP PDG
Related Unrelated

ρ → π0γ (×104) 5.16 ± 0.03 5.16 ± 0.03 6.8 ± 1.7
ρ → π±γ (×104) 5.12 ± 0.03 5.12 ± 0.03 4.5 ± 0.5

ρ → ηγ (×104) 3.16 ± 0.05 3.19 ± 0.10 2.4+0.8
−0.9

η′ → ργ (×102) 33.3 ± 1.26 34.5 ± 2.1 30.2 ± 1.3

K∗± → K±γ (×104) 9.80 ± 0.94 9.80 ± 0.93 9.9 ± 0.9
K∗0 → K0γ (×103) 2.32 ± 0.02 2.32 ± 0.02 2.3 ± 0.2

ω → π0γ (×102) 8.49 ± 0.05 8.49 ± 0.05 8.5 ± 0.5
ω → ηγ (×104) 7.81 ± 0.11 7.88 ± 0.23 6.5 ± 1.0
η′ → ωγ (×102) 2.83 ± 0.11 2.94 ± 0.19 3.01 ± 0.30

φ → π0γ (×103) 1.28 ± 0.12 1.27 ± 0.12 1.31 ± 0.13
φ → ηγ (×102) 1.28 ± 0.02 1.27 ± 0.04 1.26 ± 0.06
φ → η′γ (×104) 0.59 ± 0.02 0.60 ± 0.03 1.2+0.7

−0.5

η → γγ (×102) 38.87 ± 0.75 39.3 ± 1.8 39.21 ± 0.34
η′ → γγ (×102) 2.09 ± 0.08 2.17 ± 0.10 2.11 ± 0.13

8.2 A new global fit to radiative decays

From (72), we have been led to conclude that x and θP are
algebraically related, at least to a very good approxima-
tion. In order to check this in its full realm, we have redone
the fits given in [1], requiring additionally this functional
relation. This turns out to describe all radiative decays in
terms of only 4 independent parameters (g, θP , θV , &T ) or
(g, x, θV , &T ), which is, by far, the most constrained fit of
the 14 radiative decay modes ever attempted9. We use the
constant approximation for δV following the conclusion of
our study [9].

The fit quality obtained when setting up the constraint
is χ2/dof = 9.14/11, and does not exhibit any degrada-
tion compared to the fit quality reached when releasing
this constraint χ2/dof = 9.13/10. The difference, in this
last case, with [1] is simply the use inside the fit of the
PDG mean value for η → γγ instead of its mean value
from all experiments (including the Primakoff effect mea-
surement). In all cases, we have used the so–called [1] K∗

9 As, now, we know that θP and θ8 are functionally related,
and that θ8 � −20◦ is equivalent to the favored [1] θP �
−10◦, we could, in principle, fix θ8 (and then θP ) to its ChPT
expectation. We have not perform this exercise, as the accuracy
on the ChPT estimate of θ8 is still poor [34] and its sensitivity
to NSB somewhat unclear. Nevertheless, it indicates that, from
first principles, one can perform a fit to the 14 radiative decays,
with remaining free fitting parameters referring only to vector
mesons properties

model, also commented on in [9]. Therefore, (72) is indeed
intrinsically present in the full data set examined sofar.

Practically, the fit returns all parameters at the values
obtained when leaving x and θP unrelated, even θP which
changes from θP = −10.38◦ ± 0.97◦ to θP = −10.32◦ ±
0.20◦. The sharp reduction of the statistical error is an
effect of removing the correlations by accounting explicitly
for the functional relation in (72). The corresponding value
for x is 0.901 (to be compared with the fit value x = 0.902
mentioned above). This numerical value has an important
consequence, as will be seen in the next subsection. The fit
branching fractions with x and θP left free or related are
given in Table 2 altogether with the data recommended
by the PDG [10], all used in the fit procedure.

When setting the x − θP relation, we do not observe
any degradation in the quality of the description of the
various branching fractions. Comparing the two sets of
predictions in Table 2, one should note the sharp reduction
of the statistical errors produced by having switched on
the x − θP relation in all decay modes involving the η
meson. This also affects the modes involving η′, though to
a lesser extent.

The increased accuracy we observe is not an artifact,
but a trivial consequence of using independent (fit) vari-
ables instead of correlated ones. This explains why, even
if it were theoretically better motivated, the use of corre-
lated quantities like F 0

η/η′ and F 8
η/η′ is not recommended

in numerical analyses, as this results in unaccurate uncer-
tainties.

One should also note that recent measurements [52]
of φ → η′γ by the CMD–2 Collaboration at VEPP–2M,
using new η′ decay modes, confirm the central value of
[53] rather than that of [54] reported by the PDG [10];
the agreement with the fit values we always get for this
mode [1] is thus improved. Indeed, the new measurement
([5.8 ± 1.8] × 10−4) reported by [52] (or by [53]) would
provide a minimum χ2 smaller than reported above by
one unit; it has not been used in the fit in order to keep
consistency with all 1998 recommended values [10].

8.3 The x–θP relation kills glue in the η′ meson

In the previous study of [1,8] it was shown that the cor-
relation between glue and nonet symmetry breaking was
huge. As stated several times above, accounting generally
for glue coupling to the η/η′ system implies that two an-
gles have to be introduced in addition to θP . One (β) is
such that β = 0 implies that the η meson does not cou-
ple to glue, the other (γ) is such that γ = 0 implies a
decoupling of the η′ from glue.

However Table IV in [1] or Fig. 2 in [8], clearly show
that: i/ whatever the value of the nonet symmetry break-
ing parameter x, the angle β is not observed to deviate
sensitively from zero; ii/ additionally, for x � 0.9 the an-
gle γ is also consistent with zero.

We have seen above that it was indeed appropriate to
parametrize PS NSB by x and given its most probable
(fit) value 0.901. So, we can conclude that within the pic-
ture presented in this paper, there is no signal for a glue
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component inside the η and the η′ mesons, but instead
there is a significant signal for deviation from exact nonet
symmetry: x = 0.901 relative to 1 reveals a 5σ significance
level.

This is confirmed by performing the fit with γ and x,
now (numerically) decorrelated because of the functional
relation in (72). In this case, the fit quality is strictly un-
changed χ2/dof= 9.14/10 and the minimum is reached
for γ = −0.02◦ ± 18◦; this shows that no glue component
inside the η′ is required by the data.

The conclusion would be quite different [1,8,17,18,39]
if NSB could have been neglected. Indeed the level of cor-
relation between standard nonet symmetry breaking (the
parameter x) and glue is such that one can easily misiden-
tify the former as being the later. So, even if our data set
cannot exclude the existence of glue coupled to the η/η′
system, it exclude presently its need.

8.4 θP and the isoscalar mass matrix

In light of the above, the ChPT picture happens to be con-
sistent with the standard one angle state mixing scheme
of fields (or wave–functions):

 η
η′


 =


 cos θP − sin θP

sin θP cos θP





π8

η0




�



cos

θ8
2

− sin
θ8
2

sin
θ8
2

cos
θ8
2





π8

η0


 (73)

The most accurate value for θP comes out from fit to all
radiative decays with the x − θP correlation set up. In-
deed, from the subsection just above, we know that it is
legitimate to neglect coupling to glue. Actually, one can-
not assert that glue (or any other singlet state) is not
present inside the η/η′ system, but what is shown in [1,8]
for η, and just above for η′, is that no glue contribution is
required. A kind of minimum complexity argument, then
leads to state β = γ = 0 and to decouple glue from the
η/η′ system. The angle value is θP = −10.32◦ ± 0.20◦, a
hardly constrained value.

With this, it is possible to revisit the determination of
the isoscalar mass matrix [13,35,51]. Indeed we know that
the mass matrix M:

M =


m

2
88 m2

08

m2
08 m2

00


 (74)

admits the following eigenvectors:

vη = (cos θP ,− sin θP )

vη′ = (sin θP , cos θP )
(75)

with eigenvalues M2
η and M2

η′ . This gives m2
88 = 0.320 ±

0.001, m2
00 = 0.898 ± 0.001 and m2

08 = −0.109 ± 0.004 in
units of GeV2. This corresponds to m00 = 0.948 ± 0.001
GeV, and m88 = 0.566 ± 0.001 GeV, the former close to
the η′ mass and the latter close to the η mass as one
might expect from the value of θP . The off–diagonal term
can be written m2

08 = −0.45M2
K . The solution favored

by VMD phenomenology is a very small deviation from
the classical Gell–Mann–Okubo formula [13,35,51]. More
precisely, from:

M2
π8 =

(4M2
K −M2

π)
3

[1 +∆] (76)

(with Mπ8 ≡ m88) one extracts ∆ � 0.01, where most of
the error is due to choosing the mass values for K and π.

8.5 Broken VMD, ChPT and the third mixing angle

We have shown that the HLS model, after applying FSB
and NSB, yields the structure of the ChPT Lagrangian
L(0) + L(1). To be more specific, this concerns the PS ki-
netic energy part and the Λ2 and L8 terms [20,21] are not
considered; they would influence the PS mass term which
is outside the realm of this paper. Therefore, one can state
that L(0) +L(1) is equivalent to the HLS Lagrangian bro-
ken as shown in Sect. 3 and the relationship exhibited in
Sect. 6.3 between θ8 and θP is not accidental.

Expressing the η/η′ → γγ coupling constants in terms
of θP , we have seen that this is the mixing angle which tra-
ditionally parametrizes the Current Algebra expressions.
It is clearly a natural parametrization of VMD instead
of the two mixing angles θ0 and θ8. For this purpose, it
is quite interesting to compare our (32) with the corre-
sponding (39) in [21], expressed in terms of θ0 and θ8.

Therefore, as it is possible to provide θP a clear phys-
ical meaning through a mathematically well defined pro-
cedure, it is a quite legitimate choice. Its main virtue is to
allow for a straigthforward handling of symmetry break-
ing effects in the VMD Lagrangians (HLS and FKTUY)
as shown in [4,1]. The present paper has shown that the
corresponding parametrization of VMD is easy to connect
with the ChPT conceptual framework.

8.6 Nonet symmetry breaking
and the third mixing angle

Let us make a final (practical) remark on NSB. Refer-
ence [1], and [38] before, clearly proved that nonet symme-
try breaking plays numerically a major role in accounting
for radiative decays of light mesons within a relatively
simple and constrained framework. Even if small in ab-
solute magnitude (δ � −0.10), the effect is statistically
significant (� 5σ). At the present level of experimental
accuracy, the data description quality is sensitive to this
improvement.

Quite interestingly, neglecting NSB in coupling expres-
sions does not result in a dramatic change of the fitted
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mixing angle value, but mostly of the fit probabilities.
Reference [1] has thus obtained θP = −14◦±1◦ with, how-
ever, a degraded fit quality (χ2/dof = 32/9). Table 1 in
[1] clearly show that all other physics parameters have
unchanged fit values.

This kind of angle value has been obtained in several
other approaches; their common feature is their neglect-
ing NSB in the pseudoscalar sector. Reference [29] thus
obtains θP = −18.2◦ ± 1.4◦ in their fit to V Pγ processes
and θP = −12.3◦ ± 2.0◦ in their fit to the Pγγ modes10.
References [30,31] within the bound state approach and
dealing with 2–photon processes only also get a mixing
angle of θP � −12◦. The model of [33] finds a fit solution
θP � −15◦ (with no quoted fit quality); its freedom is
however much larger than ours and the relation between
their breaking scheme and ours – which now is motivated
by ChPT concepts – is unclear.

Instead, in our approach, the best solutions to sep-
arately V Pγ and Pγγ processes coincide and both cor-
respond to θP = −10.3◦ ± 0.2◦. Additionally, we should
remind that, in our approach, all Pγγ couplings depend
at leading order only on fK/fπ and θP or the NSB pa-
rameter x. From this point of view, we consider that the
result reported in [27] (a prefered θP � −10.2◦) gives our
approach a strong support from lattice QCD estimates.

It should thus be stressed that NSB in the pseudoscalar
sector is exhibited, not so much by sharp changes in nu-
merical values of physics parameters, but rather by their
improved fit probabilities and, therefore, their actual accu-
racy. Indeed, as clear from this Section, and the previous
ones, it was shown that the main ChPT parameters have
values which are not sharply sensitive to having x �= 1.

This is also the reason why the numerical results of
[31] are so close of ours, even if these authors neglect NSB
within the limited data set they consider. To be more spe-
cific, effects of the small value of δ (or of Λ1) are compet-
ing with SU(3) breaking, always by modifying non–leading
corrections; for instance, the magnitude of the correction
terms to θ0 − θ8 (see (54), for instance).

9 Conclusion

In a previous work, we were faced with a paradoxical prob-
lem. Using the HLS model and its anomalous FKTUY
sector, together with a definite breaking scheme, it is pos-
sible to achieve quite a satisfactory description of all radia-
tive decays, including η/η′ → γγ. Within this framework,
it was moreover possible to predict accurately these last
rates, using only numerical information obtained by fit-
ting the V Pγ processes in isolation. This quite satisfactory
pattern was obscured by some strange results: the (single)
pseudoscalar mixing angle was found at θP � −10◦ and
the octet decay constant was f8 = 0.82fπ, both in obvious

10 One should note that, even if both fit qualities are sepa-
rately good, the two angle values are different enough that one
can guess that the fit quality of a global description would be
certainly degraded and providing θP � −15◦

disagreement with ChPT expectations. This meets inde-
pendent analyses of other authors like Kekez, Klabučar,
Scadron, Bramon; it received recently a clear support of
lattice QCD computations of the UKQCD group.

The origin of this disagreement has been investigated.
Starting from a broken VMD based Lagrangian, we have
shown how to deduce the (WZW) η/η′ two–photon ampli-
tudes on the one hand, and the expectation values
〈0|J0,8|η/η′〉 on the other hand (J ’s are the axial cur-
rents), which gives the customary (ChPT) definition of
decay constants.

The disagreement reported above has been traced back
to inconsistent definitions for the same parameters pro-
vided by ChPT and the WZW Lagrangian (through the
former definitions of Current Algebra). This inconsistency
is a pure consequence of breaking SU(3) symmetry. For
instance, it was shown that none of the two angles of ex-
tended ChPT can appear as such in the two–photon decay
amplitudes. In some way, besides the angles θ8 and θ0 re-
cently introduced by Kaiser and Leutwyler, the standard
angle θP , which still describes the η/η′ wave–function mix-
ing, goes on playing an important role, the main one in ra-
diative decays. It has been shown that θP � θ8/2, within
a ChPT motivated Lagrangian framework, perfectly ac-
counting for all data on radiative decays and all accessible
ChPT expectations. Moreover, analysis of numerical cor-
relations has illustrated why the use of θP is more appro-
priate in order to get accurate measurements of physics
parameters, including the standard ChPT ones.

We thus have clearly illustrated that, the HLS–FKTUY
model, supplemented with SU(3) flavor breaking à la BKY
and nonet symmetry breaking, as was introduced in [1]
was equivalent to the ChPT Lagrangian L(0) + L(1). Be-
sides the successful description of all radiative decays, bro-
ken VMD thus meets all the requirements of extended
ChPT (the two mixing angles and the two decay con-
stants) with good accuracy. It was then shown that the
relevant (and self–consistent) angle pattern is θ0 � 0◦,
θ8 � −20◦ and θP � −10◦. Correspondingly, we have
simultaneously f8 = 0.82fπ when using the WZW (or
Current Algebra) definition and f8 = 1.33fπ, when using
standard ChPT definition. Subsequently, we have shown
that the f i cannot be interpreted as isoscalar meson decay
constants because of flavor SU(3) breakdown. Therefore,
VMD phenomenology is indeed able to provide ChPT with
quite reliable input. With this respect, an important feed-
back from ChPT would be a more precise estimate of θ0
and/or a (reliable) theoretical error.

This study has led us to several additional conclusions:
i/ Because θ0 = 0 is observed with a quite impressive
precision, it has been possible to relate nonet symmetry
breaking (the parameter x) and the mixing angle θP . To
our knowledge such a relation has never been reported.
ii/ The nonet symmetry breaking parameter λ which
weights the additional singlet contribution to the
Lagrangian is small (λ � 0.20 ± 0.04). It coincides with
the usual OZI breaking parameter Λ1 of ChPT.
iii/ As consequence of x = 0.901, it has been shown, that
no glue component is needed inside the η′ meson.
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iv/ By relating x and θP , the condition θ0 = 0 allows to
account for observed correlations in fitting radiative de-
cays. Additionally, this leads us to propose a 4–parameter
model to account for all data on radiative decays (includ-
ing K∗± → K±γ); this is by far the most constrained
model ever proposed and we proved that it is quite suc-
cessful.
v/ The quark mass ratio deduced from VMD information
is ms/m̂ = 21.2 ± 2.4.
vi/ Departure from the classical Gell–Mann–Okubo
quadratic mass relation is observed at only the percent
level.
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Appendix A The anomalous decay term

We shall now briefly discuss the equivalence of the anoma-
lous decay amplitude T (P → γγ) as calculated either
from the divergence of the axial current, or the WZW
Lagrangian [46]. Let us recall the form of the axial cur-
rent given in (19). We then take the divergence of this to
obtain11

∂µJa
µ = 2fTr[T aXAT

bXA]∂2P b + λfδa0∂2P 0. (A.1)

Now let us turn to the equations of motion for the pseu-
doscalar fields, namely,

∂µ
∂L

∂(∂µP )
− ∂L
∂P

= 0, (A.2)

leading to (allowing for a pseudoscalar mass term)

2Tr[T aXAT
bXA]∂2P b + λδa0∂2P 0

= m2
PP

a − C

f
εµναβFµνFαβTr[Q2T a], (A.3)

where C is a well known dimensionless constant [26].
We are now in a position to show that the amplitude

obtained form the axial current is equivalent to that ob-
tained from the anomalous Lagrangian. First let us con-
sider 〈AA|∂µJa

µ |0〉. As a total divergence this vanishes, in

11 In this Section we use for conciseness the notation P =∑
a=0,···8 P

aT a; thus for instance P 0 = η0

accordance with the fact that there are no truly massless
particles in the spectrum (we are not considering the chi-
ral limit). So using this along with (A.1) and (A.3) we
have

fm2
P 〈AA|P a|0〉 = C〈AA|FµνF̃

µνTr[Q2T a]|0〉. (A.4)

As q → 0 〈X|P |0〉 = 〈X|P 〉, hence, as m2
P is absorbed in

the definition of the amplitude, we have

T (P a → AA) =
C

f
〈AA|FµνF̃

µνTr[Q2T a]|0〉. (A.5)

We see that the result we have obtained, starting with the
axial current, is the same as one would obtain from the
anomalous Lagrangian term. This equivalence extends to
V V P interactions.
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